If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10w^2+15w=0
a = 10; b = 15; c = 0;
Δ = b2-4ac
Δ = 152-4·10·0
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-15}{2*10}=\frac{-30}{20} =-1+1/2 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+15}{2*10}=\frac{0}{20} =0 $
| 3x^2+x=1500 | | 15x+7=13x9 | | 3x+11=-34-6 | | 7x+6=4x+50 | | 4m3-m2-16m+12=0 | | 0.28x+0.1(x-3)=1.1 | | 2-(1-x)=-2 | | 8+6=10+k | | 3/(x+1)=2/(x−3) | | 4(x+0.5)+x=7 | | 3k÷2=9 | | 4(1+d)/3+1=71/3 | | 7-7=2x2 | | 6e+3=3e+9 | | x=3/2x+16 | | 1/4x=-1/2x+3 | | 8=8m+10m | | X+1.5x+3x=99 | | 2f+4=24 | | 88-4(x+10)=28 | | 88-4(x+10=28 | | 6+4(13-x)=26 | | 2(x-7)+122=150 | | -7x+2=2x-4 | | 4x-2=3-x | | x/3/4=2/9/10 | | 4x+0.8*6=15.2 | | 10x-(4x+7)=7x+4 | | 4x(x-11)=x | | (2x)+(1/2x)+(1/4x)+3=300 | | (2x)+(1/2x)+(1/4x+3)=300 | | 3x-1/5-1+x/2=3-x-1/2 |